Aug 24, 2017

ELI5 Edition: Basically everything uses sort (either to rank things or to set up search), so improvements to sort improve basically everything.

Explaining it in further detail like you're a fellow member of our industry:

Edge computing advances are pretty important right now, since the amount of data we're working with on the edge of the network is growing very quickly. Advances in how we compute backpropagation (essentialy using a right-recursive process for the Chain Rule) mean that we can do machine learning on 2015-level phone gpus, rather than 2015-level desktop GPUs.

This advance hints at a promise of similar gains. With care, you can sort much faster. What's more, your sorts and your merge of decomposed sorts is roughly the same cost now. And multiple, layered sorts don't require custom logic or clever functional programming (at the edge developer's model) to compose.

Essentially you pick what fields in complex (maybe even nested) data structures to sort by, in what order, and the system makes a sort.

Why does this matter? Well, it will make nearly all data structures Just Faster; many of them secretly rely on ordered and sorted arrays. It makes it easier for distributed systems authors to make queryable systems (it's pretty easy to write a discriminator or specify a discriminator function remotely and then use that on the fly, as opposed to a comparator).

One place in the client-software world where it can have big impact is offline webapps. Right now, it's almost always cheaper to call out to a remote datastore rather than use a local datastore even if you're using sqlite under the covers because of the cost of synchronizing sqlite's data model. A discriminator-based approach would let you do complex queries of data in memory, but that data could still be themselves commutative data types that are coalescing data out of a data stream (or multiple data streams) remotely.

It's also worth noting that another really cool paper from this year improving on the HAMT trie (https://michael.steindorfer.name/publications/phd-thesis-eff...) could also benefit from this approach, which means all of us using immutable data structures can continue to do so with MUCH better performance characteristics but continued thread safety.